AI-딥러닝/실습(학습모델 비교)

데이터 셋 분석 및 학습 비교(8) - 정리 및 개선

codingmonsters 2021. 6. 13. 00:19

지금까지 실험해본 학습결과를 정리해보자.

 

 

01 Softmax Classification 84.69%

02 Keras Sequential Dense Net 89.66%

03 Keras CNN 92.31%  4순위

04 Keras CNN (batch_size, Epoch 값 조정) 94.7%    2순위

05 Keras CNN( 레이어 값 조정) 92.85%  3순위

06 Random Erasing Net 95.8%    1순위

 

 

이 결과를 통해 얻은 결론과 소감 배운점을 정리해보면

 

여러가지 모델들을 사용해보고 모델의 레이어나 batch_size, Epoch, 활성화 함수 등을 수정해보면서 모델의 깊이를 더 깊게 하거나 성능이 더 좋은 모델을 사용하면 정확도를 향상시킬 수 있다는 것을 알 수 있었고...

 

제일 중요하게 생각하는 것은 모델을 탐색하고 구조를 분석하는 스킬을 늘릴 수 있었던 것 같다.

 

만약 앞으로 더 시도해볼게 있다면 업 스케일링 기법을 사용하여 샘플의 해상도를 높혀서 분류를 진행하거나 호근 Deconvolution네트워크를 사용하여 feature map의 크기를 키워서 진행하 보는것도 정확도를 향상 시킬 수 있지 않을까 예상한다

 

또는 데이터셋의 해상도 증진을 위해 OpenCV를 사용하여 개선해보는 것도 나쁘지 않을 것 같다.